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Abstract 

Quantum dynamics is normally used to describe the causal evolution of the quantum 
state of a physical system between initial acts of preparation and final measurement 
operations. But logical consistency and completeness require that the same dynamical 
principles be applicable to the physical description of the preparation and measurement 
processes themselves. There is an extensive literature of contributions to the quantum 
theory of measurement, but very little theoretical scrutiny has been given to the process 
of state preparation. 

This paper begins with a philosophical analysis of the concept of preparation in 
quantum physics, then develops a classification of preparation schemes into selective and 
coercive types. An exact mathematical model illustrating coercive preparation is presented 
in detail. 

1. Introduction 

The celebrated philosophical subtleties of  quantum mechanics stem 
from its peculiarly unique status as a theory that is at once fundamental and 
statistical. By fundamental, we mean merely that contemporary evidence 
forcefully suggests that the propositions of  quantum mechanics may be 
regarded as logically anterior to all other physical theories, and as adequate 
for the thorough scientific description of all known phenomena. Obviously 
history indicates that such a state of  affairs is transitory; nevertheless 
present-day physics does in fact regard quantum mechanics as a kind of 
pervasive theoretical base which today occupies the fundamental epistemo- 
logical niche that once belonged to classical analytical mechanics. 

Yet quantum mechanics is a probabilistic theory; all of  its causal state- 
ments refer only to probabilities for obtaining possible numerical results 
if and when acts of  measurement are performed. Moreover, the theory is 
irreducibly probabilistic in the sense that its mathematical structure, as the 
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uncertainty theorem reveals, cannot accommodate any description of a 
physical system in which all 'attributes' are assigned with unit probability. 
From a classical perspective, and from that of the 'hidden variables' school, 
the latter would seem to imply that quantum theory cannot be fundamental, 
lbr probability was once regarded merely as a measure of ignorance as to 
the exact behavior of an underlying microcosm which a truly fundamental 
theory would presumably describe without recourse to the probability 
concept. 

Thus when we adopt the philosophical stance of the quantum theorist-- 
that the construct probability may be a primitive in a fundamental physical 
theory--certain difficulties arise in applying the new viewpoint, especially 
to pragmatic empirical situations for which the classical 'common-sense' 
world view seems to provide the better mirror of direct experience. 

One aspect of the dilemma is represented by the classical limit problem of 
quantum mechanics, which challenges the probabilistic quantum theory to 
account for the fact that macroscopic processes admit of deterministic 
description. Another aspect involves the theme of a complex set of investiga- 
tions known in the literature as the quantum theory of measurement, the 
purpose of which is to describe quantally the empirical procedures by which 
numerical data are elicited from microsystems via interaction with 
macrosystems. 

To these two classes of fundamental quantum theoretical problems, we 
would add a third--to describe quantally the empirical procedures, called 
preparations of state, wherein microsystems are prepared, via interaction 
with macroscopic apparatus, for subsequent measurement. The present 
paper is offered as a contribution to this third, largely ignored, class of 
problems. (Recently we have also explored the related problem (Band & 
Park, 1970, 1971) of extracting from data the quantum state representation 
belonging to a given preparation.) 

This is not the place to dwell upon the nature of preparation and measure- 
ment; for more lengthy philosophical analyses, the reader is referred to other 
publications (Margenau, 1963; Park & Margenau, 1968). However, in order 
to estaNish clearly the meanings we have adopted for these often confused 
terms, we present a brief outline of what might be called the preparation- 
measurement format of experimental science. 

(a) 

(b) 

Because the scientific method eschews solipsism, only inter-subjective, 
hence reproducible, data are regularized by scientific theory. Hence 
the operational schemes by which systems are prepared for empirical 
investigation must be repeatable. 
Since quantum mechanics is irreducibly probabilistic, the epistemic 
link between its abstract constructs and empirical data is through 
statistics. For the operational definition of probability, the principle 
by which abstract probabilistic theorems are translated into testable 
assertions, is the following statistical rule: the probability that event 
M occurs in an experimental arrangement H equals the relative 
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frequency with which • occurs in an ensemble of identical experi- 
mental arrangements/7. 

(c) From (a) and (b) we conclude that quantum mechanics is not a 
verifiable scientific theory unless procedures exist which will invari- 
ably generate any given preparation,/7. 

Furthermore, unless quantum mechanics can consistently describe 
such procedures, the theory denies its only means of verification and is 
thus self-contradictory. 

(d) A single experimental run consists of a preparation,/7, followed by a 
measurement act which yields a numerical datum. Verification or 
falsification of quantum mechanical probability assertions is then 
accomplished by statistical analysis, based on the rule given in (b), 
of data gathered in an ensemble of runs each having begun with the 
reproducible preparation,/7. 

In the mathematical language of quantum theory, each empirically 
possible/7 is assumed to be representable by a density matrix p. Hence the 
problem of state preparation which the present work explores may be 
reduced to the following theoretical question: can quantum mechanics 
describe an environment E for a system $ such that the end result of the 
interaction of 5 and E is to leave 3 in a preassigned quantum state p which is 
independent of the original state of S prior to the interaction ? An affirmative 
answer will assure that quantum mechanics is not self-contradictory and 
that, despite its irreducible probabilities, it can cope within its own distinc- 
tive logical nexus with the empirical concept of reproducible preparation so 
vital to experimental science. 

2. Selective Versus Coercive Preparations of State 

The most commonly discussed state preparation scheme is a method 
erroneously called selective 'measurement'; its paradigm is that stage of the 
Stern-Gerlach experiment which precedes detection and measurement at 
the photographic plate. In order to understand the experiment in genuinely 
quantum mechanical terms, it is necessary to refine the popular jargon 
which speaks of 'splitting the beam and accepting only that portion con- 
taining the desired quantum state.' The Stern-Gerlach selection procedure 
may be rigorously described as follows: when an atom in any given initial 
state is subjected to the proper physical environment, the resultant causal 
evolution leaves the atom in a rather unusual state in which the joint 
probability distribution for internal energy and center-of-mass position 
correlates the two random variables; hence a position measurement will 
determine, by inference, an energy datum. Energy data thus obtained will 
be distributed according to the theoretical energ3 ~ distribution inherent in 
the given initial state. 

Now, it happens that this Stern-Gerlach correlation can be exploited to 
effect a state preparation for any desired energy eigenstate. By placing 
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absorbers in those spatial regions where detection of the atom would yield an 
energy other than the one whose eigenstate is desired, we create an apparatus 
from which only atoms certain to yield the desired energy can emerge. Thus 
the apparatus prepares the desired eigenstate of the energy. The overall 
device is often colorfully referred to as a 'filter'; but this terminology is 
misleading, especially when the initial state is pure and hence in principle 
indivisible. This philosophical matter is more thoroughly treated elsewhere 
(Park, 1968). 

Briefly, what actually occurs is that the initial state, upon interaction 
with the absorbers, is converted to a special mixture resolvable into sub- 
ensembles, one of which is described by the desired energy eigenstate. The 
unwanted components of the mixture are then somehow diverted or 
destroyed; hence the subensemble of atoms which survive this gauntlet will 
be characterized by the desired energy eigenstate. We shall refer to prepara- 
tion procedures of this kind, which involve conversion of the original state 
to a mixture of specified structure followed by selection from that mixture, 
as selective preparations. 

Unfortunately, selective preparation is not really as generalizable as it 
might seem. Indeed its success depends strongly on the possibility of finding 
some means for realizing the critical correlations which make the selection 
process practicable. The correlations required are in fact mathematically 
isomorphic to those in von Neumann's old theory of measurement, a topic 
which has inspired interminable controversy over the past four decades. 
Consequently it seems appropriate to seek an alternative class of preparation 
schemes which would not depend upon the crucial selection process. 

Margenau, who was probably first (Margenau, 1937) to recognize clearly 
the essential distinction between preparation and measurement, has illus- 
trated the preparation concept by noting that the ground state of an atom 
may be prepared simply by 'waiting,' relying upon spontaneous emission 
to effect the desired preparation. The same observation is the germinal idea 
of a theory of preparation due to Lamb (1969). In the latter, any desired 
pure state is prepared by placing the system in a potential well designed, if 
possible, so that the new ground state is the modulus of the desired wave 
function. After the spontaneous preparation of the ground state has 
occurred, the desired phase is obtained by careful impulsive perturbation. 
If it is not possible to devise a potential whose ground state is the desired 
wave function, still it is usually possible to find a potential such that one of 
the bound states is the desired function. Thus in principle the desired state 
may be prepared by placing the system in the well, performing a selective 
preparation of the desired state (an energy eigenfunction of the system when 
in the well), then 'turning off' the potential. This method presupposes of 
course that the correlating interactions required to perform a selection can 
be found. 

Rather than depend in any way on the selection process, we wish to 
explore the possibility of driving systems into preassigned quantum states 
via purely dynamical interactions. That is, we envisage a process wherein a 
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system, no matter what its initial state, is compelled to evolve into some 
desired final state. Such a process would constitute a preparation procedure 
for the desired state. Moreover, every sample of the system subjected to the 
process would emerge in the desired state, no selection having been involved. 
We shall call such a state preparation scheme a eoereive preparation. 

The spontaneous emission processes mentioned above are examples of 
coercive preparation; an atomic system is driven to its ground state by 
interaction with the vacuum state of the electromagnetic field. Lamb's 
theory of preparation is thus a combination of coercive and selective 
preparations. The remainder of the present paper is devoted to a detailed 
study of purely coercive preparations; in particular, we shall demonstrate 
the possibility of coercively preparing states other than the ground state. 

A purely classical example may be worth keeping in mind; viz., a water- 
cooling system designed to bring a small container to a predetermined 
temperature. 

3. Quantum State Evolution for an Open System 

The simple model of a coercive preparation to be presented in Section 4 
will require following the temporal evolution of the state of a quantum 
system So as it interacts sequentially with the systems Ea, E2, ..., s a 
collection to be called the environment/: of $o- 5o will be referred to simply 
as the system. The totality S O +/:,  system plus environment, will be termed 
the global system. 

The Hilbert space for the global system is the tensor product of the 
Hilbert spaces of the constituents: 

K 
Jr =;r |  |  | J~',, = R ><f~ (3.1) 

k=0 

Let Ho, Hk>o denote the energy operators for 50, Ek, respectively, and Vok 
the interaction potential energy between 50 and s If the eigenvalue 
equation for Hk, k = 0 . . . . .  K, is expressed as 

HglEd)k = ElEd)k (3.2) 

where d is an index to allow for degeneracy in the Hk spectrum, the global 
space J d  is spanned by the set 

{ [Ed)0 ]E ~) d(l))~... [E ~ d(r))K} (3.3) 

The quantum state of the global system at time t is represented by the 
global statistical operator ('density matrix'), for which we adopt the symbol 
capital rho: P(t). According to quantum theory, P(t) evolves unitarily, its 
causal development being generated by the global Hamiltonian. The density 
matrix po(t) of the system 50, on the other hand, does not in general evolve 
unitarily; its temporal development is determined from that of P(t) by 
applying yon Neumann's theory of composite systems (yon Neumann, 
1955). 
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For simplicity in notation, but without loss of generality, we consider in 
the present section the case K = 2. The global Hamiltonian which generates 
time translation is then given by 

H = H o + H I  + / / 2 +  Vol+ V02 

~ H o |  | + lo|  | + l o G l l  | 

"~- V01 |  Vo2| li (3.4) 

where we have tacitly assumed that the environment subsystems E l, E2 are 
not mutually interacting. (lk denotes the identity in J(~k.) Causal evolution 
of the global density matrix is therefore expressed as follows (h = 1): 

P( t )  = T ( t ) e (o )  Tt(t) (3.5) 

where T(t)  satisfies 

n T ( t )  = i dT(t)  dt ' T ( o ) =  1 (3.6) 

To study the time development of the system of interest, we must calculate 
the reduced density matrix po(t), which completely describes the statistics 
of measurement results obtained by measuring observables associated 
exclusively with 5o, i.e. observables of the form A | 11 @ 12. 

According to the theory of composite systems, p0(t) is computed by using 
the 'partial trace' operation defined by 

po(t) = Tr12P(t) 

=_ ~ l<al2<blP(t)[b)2la) 1 (3.7) 
ab 

where {[)k} may be any orthonormal set spanning ~k .  In working below 
with expressions like (3.7), it will prove convenient to use the set 

{IE (" d(1))l ]E r d(2~)2 } 

defined in (3.3). 
We assume that at t = 0, 50, E~, and E 2 are completely uncorrelated. This 

means that the joint probability distribution for any three observables of 
the form A | 11 | 12, lo | B | 12, 10 @ 11 @ Cis a product of three functions 
of one variable each. The initial global density matrix will then have the 
product form 

e(o) = po(O) | Mo) | Mo) (3.8) 

We further assume that when t E [0, tl], only 50 and El interact and that 
when t ~ [tl,t2], tl < t2, only So and E2 interact. 

In other words, the global Hamiltonian has the form 

H(t )  = [1 --O(t -~ tl)] H(1) + [O(t -  tl) -- O ( t -  tz)] H(2) 

+ O ( t -  t2)H(3), (3.9) 
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where 0 is the Heaviside unit step function and 

H(1)  -- Ho + HI + H2 + Vol 

H ( 2 ) - H o + H I  + e 2 +  Vo2 

m(3) --- H0 + Hi  + H2 (3.10) 

Thus intuitively we expect the evolution opera tor  to be 

T ( t )  = [1 - O(t - tl)] exp [ - i t H ( 1 ) ]  + [O(t - tl) - O(t - t2)] 

• exp [ - i ( t  - t l )  H(2)] exp [ - i t1  n (1 ) ]  + O(t - t2) 

• exp [ - i ( t  - t2) H(3)]  exp [-i(t2 - ti) H(2)] 

• exp [ - i t l  H(1)] (3.11) 

That  (3.11) is the correct  evolution opera tor  for  our  discontinuous 
global Hamil tonian may be verified by noting that  T ( t )  is continuous and 
satisfies (3.6): 

t-d-[=" d T  [1 - O(t - t,)] H(1)  exp [ - i t H ( 1 ) ]  + [O(t - t i )  - O(t - t2)] H(2)  

• exp [ - i ( t  - q ) H ( 2 ) ]  exp [ - i t1  H(1)] 

+ O(t - t2) H(3)  exp [ - i ( t  - t2) H(3)  ]exp [-i(t2 - fi) H(2)] 
• exp [ - i q  H(1)] 

- i~( t  - ta) exp [ - i t H ( 1 ) ]  + i [8( t  - t l )  - ~( t  - t2)] 
• exp [ - i ( t  - tl) H(2)]  exp [ - i t l  H(1)] 

+ i~( t  - t2) exp [ - i ( t  - t2) H(3)]  exp [-i(t2 - tl) H(2)] 
• exp [ - i q  H(1)] 

= ([1 -- O(t - -  ti)] H(1)  + [O(t - tl) - -  O ( t  - -  t2) ] H(2)  + O(t - -  t2) H(3))  

• {[1 - O(t - tl)] exp [ - i t H ( 1 ) ]  + [O(t - t l )  - O(t - tz)] 
• exp [ - i ( t  - h )  H(2)]  exp [ - i q  n (1 ) ]  + O(t - t2) 

• exp [ - i ( t  - t2) H(3)] exp [- i ( t  2 - tl) H(2)] exp [ - i t  i H(1)])  

- i~ ( t  - t l)(exp [ - i t  1 H(1)] - exp [ - i ( t l  - tl) H(2)]  
• exp I - i t 1  H(1)]} 

- i3 ( t  - t2) {exp [ - i ( t 2  - t l ) H ( 2 ) ]  exp [ - i t i  n(1) ]  

- exp [ - i ( t 2  - t2) H(3)] exp [-i(t2 - ti) H(2)] exp [ - i q  n(1)]}  

= H T -  i3 ( t  - tl)[0] - i 3 ( t  - t2)[0] = H T  

F r o m  (3.11), we find the evolution operator  for  t = t 2 t o  be 

T(t2) = exp [--i(t2 -- t l )H(2)]  exp [ - i t i  H(1)] (3.12) 

Since the commutators  [Ho + H~ + VoI,H2] = [Ho + H2 + VoE,HI] = 0, 
(3.12) may  be partially factored:  

T ( t 2 )  = exp [- i ( t  2 - tl) H1] exp [--i(t 2 -- t l ) ( H o  + H 2  + Vo2)] 
• exp [ - i t i ( H o  + H i  + Vol)] exp [- - ih  1t2] (3.13) 
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Thus 

P(t2) = exp [-i(tz - h) e(2)]  [pol(tl) | pz(tl)] exp [i(t2 - tl) H(2)] 
(3.14) 

where 

Pox(q) = exp [--itl(Ho + HI + Vol)] [po(O) | exp [it(Ho + H1 + Vol)] 
(3.15) 

and 

p2(tl) --- exp (-#1 HE) p2(o) exp (i h H2) (3.16) 

Note that poa(tx) is the quantum state that would be predicted by unitary 
evolution prior to tl of 5 o + El, and p2(q) is just the freely evolved state of 
E2 during the same interval. 

We next extract po(t2) from P(t2): 

po(t2) = Trl2 P(t2) 

{~ l(Edlexp [-i(t2 - tl)H1] exp [-i(t 2 - ta)(H 0 + H2 + V02)] Tr2 

• [Pol(q) | p2(tl)] exp [i(t2 - h)(Ho + H2 + V02)] 

• exp [i(t2- tl) Hi] lEd>l} 

= Tr2 {exp [-i(t2 - h)(E - E)] exp [-i(t2 - ta)(Ho + H2 + V02)] 

x exp [i(t2 - h)(Ho + H2 + V02)]} 

{exp [-i(t2 - ti)(Ho + H2 + V02)] [Po(q) | p2(tl)] Tr2 
i ,  

x exp [--i(t2 -- tl)(Ho + H2 + Vo2)]} (3.17) 

where po(tl) = Tri pol(tl), the reduced density matrix for S o at tl that would 
be predicted by unitary evolution of So + El, ignoring E 2. Equation (17) 
further demonstrates that subsequent evolution ofp0(t)is correctly predicted 
by unitary evolution of S O + g2, ignoring El, with Po(q) taken as the initial 
state of So for the So - gz interaction. 

From the structure of (3.17) we therefore infer a general procedure for 
determining po(t~) after S o has interacted sequentially with E l . . . . .  EK: 

(a) Find the unitary evolution of So + E~ until t = ti ; then obtain po(fi) 
by reducing the So+ El density matrix. 
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(b) Take po(tt) as the initial state of S O and find the unitary evolution of 
S O + E 2 until t-- t2; obtain p0(t2) by reduction of the 50 + E2 density 
matrix. 

(c) Repeat the procedure until po(t~) is determined. 

The main advantage of this procedure will be apparent below; the need to 
consider S 0 and only one environment subsystem E k at a time greatly 
diminishes the bookkeeping inherent in any study of composite systems. 
However, it must be recognized that the procedure is not valid unless the 
conditions stated earlier are met; viz., So and the Ek are all initially un- 
correlated, and So interacts with each E k individually. 

Finally, we wish to emphasize that the po(t~) derived by the prescription 
above is a rigorous dynamical result. At no point was the dubious and 
grotesque notion of acausal wave packet collapse invoked. 

4. An Illustration of Coercive Preparation 

4.1. Description of the Global System 
Consider a system So characterized by a two-dimensional Hilbert space 

ar176 spanned by the eigenvectors IE)o, IF)o of Ho. The environment E with 
which the system interacts during the coercive preparation process is a 
sequence of identical environment subsystems {E, . . . .  , s -.-, s each of 
which has the same energy spectrum {E, F) as So, except that both E and F 
are taken to be N-fold degenerate. Hence the typical Ek is characterized by 
a 2N-dimensional Hilbert space ~ k  spanned by the eigenvectors of Hk: 
{IE6>k, IF6>kld= I ..... N). 

The energy spectra of So and E k have been chosen the same to permit 
conservative energy exchanges between the system and each environment 
subsystem. The incorporation of a degree of degeneracy into the Hk 
spectrum was motivated by the fact that in actual practice the preparing 
environment would be macroscopic in character, and macroscopic systems 
typically have quite degenerate energy spectra. 

To treat the interaction between 50 and Ek, we must use the 4N-dimensional 
Hilbert space spanned by all the tensor products of H0 and H k eigenvectors. 
To minimize the tedium inherent in manipulating quantities associated with 
such a space, we shall employ the following codes for the tensor products 
involved: 

{ IE>olgd>~= 16> = 1~6,> ) 
Ir>olg6)k IN+6>--  126,> [ 
lE)olFd)k ]2N+d>-= ]ld2)| (4.1.1) 

IF>olFd>~ [ 3 N + d ) -  ]2dz)) 

where d =  1 . . . .  , N. Note that the subscripts on the d's in the right-most 
symbols are keyed to energy levels of Ek. The subscript k has been dropped 
since the Hilbert space for each identical E k has the same structure. 

2 
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In terms of this code, the (m, n) matrix element of H0 + Hk is given by 

(Ho + Hk),.. ---- (mlHo + Hkln) 

= 3m.{2E[1 - O(m - m)] + ( E +  F)[O(m - N)  - O(m - 3N)] 
+ 2FO(m - 3N)}, 1 < m. n < 4N, (4.1.2) 

where 

l>LJ" (4.1.3) 

In what follows we shall sometimes use this 0 symbol to describe matrix 
elements, as in (4.1.2); frequently, however, we simply indicate in brackets 
following a term in a matrix element expression the ranges of row and 
column indices for which that term is present in the matrix. For example, 
(4.1.2) might be expressed as follows: 

(Ho + Hk)m, = 3mn{2E[m < N] + (E + F)[N < m < 3N] 
+ 2F[3N < m]} (4.1.4) 

To describe the interaction between $o and Ek, the following potential 
energy matrix wiU be assumed: 

(V)~, = v(1 - 8,,n)[N < m,n < 3N], v real (4.1.5) 

There are several reasons why the form (4.1.5) was chosen for the interaction 
potential: 

(a) V satisfies the commutation relation 

[Ho + H~ + V, H o + H k ] = O  (4.1.6) 

which means that the interaction merely transfers energy between 5o 
and Ek. In particular, if $o + Ek initially has a definite internal energy 
(E + F), V promotes redistribution of that energy among 50 and Ek 
but cannot alter the total energy. However, Vas given by (4.1.5) is 
not uniquely determined by (4.1.6). 

(b) V connects the two members of each pair of distinct (H0 + Hk) 
eigenstates belonging to (E + F) with the same matrix element v. 
Hence the transition amplitude for each possible energy exchange 
between $0 and Ek is the same. (We wished to avoid any quantal 
analogue of Maxwell's demon.) However, the assignment of equal 
probability to each such exchange does not uniquely specify the 
form (4.1.5), since equal transition probabilities require only equal 
moduli of the (complex) transition amplitudes. 

(c) Both the choice of a real v and the use of zeros for Vmatrix elements 
insensitive to the conditions in (a) and (b) were motivated by the 
desire to solve the dynamical problem exactly, without recourse to 
time-dependent perturbation theory since the latter often introduces 
irrelevant mathematical complexities. (In retrospect, we found by 
comparison of the exact solution with the perturbation theory result 
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that a perturbation treatment, if carried through second order in V, 
does correctly indicate the general trend of the exact time develop- 
ment of #0(t).) 

As explained in Section 3, it will be assumed that the initial state of the 
global system has the uncorrelated form 

P(o) = po(o) | p,(o) | | px(o) (4.1.7) 

and that the system interacts sequentially with each environment subsystem. 
Since we are describing a coercive preparation of 50, po(O) is left arbitrary. 
However, the initial state of the preparing environment must be chosen such 
that subsequent evolution of the global system will produce the desired final 
state p0 of So. We shall assume that each initial state p~(o) is the density 
matrix ofa  microcanonical ensemble with energy F; i.e., each (macroscopic) 
environment subsystem is in a state of thermodynamical equilibrium with 
energy F. The matrix elements of pk(o), k > 0, are therefore given by 

{k(Edlpk(o)lEd')k= k(Ed'pk(o)lFd')k= k(Fd'pk(o),Ed')k= O) 
1 (4.1.8) k(rdJpk(o) lVd')k = ~f 3aa, 

Because the microcanonical ensemble is a stationary state, 

pk(t) = pk(o), t < t,_l (4.1.9) 

since Ek evolves freely except during its interval [tk_l, tk] of interaction 
with S0. 

We shall prove below that the system S0, when subjected to the sequence 
of interactions with environment subsystems just described, will invariably 
be driven to the final state given by 

{o<ElPolE>o -- ~176176 == ~176176 = (4.1.10) 

(Note that (4.1.10) describes a pure state.) 
Since (4.1.10) is the inevitable outcome of the process described and is 

independent of the initial state po(O) of 50, we have a rigorous quantum 
mechanical illustration of coercive preparation. 

4.2. Exact Evolution of the 50 + E l Density Matrix 
The calculation of poi(q), the density matrix for S0 + El at the close of 

their interaction, is accomplished in two stages: (i) determination of the 
evolution operator and (ii) application of that operator to po(O)@ pl(o). 

O) Evolution Operator for So + El 
During the interval [0, tl] when 5 o interacts with El, the Hamiltonian for 

So + El is 
H= Ho + H, + V (4.2.1) 

where V is defined by (4.1.5). Hence the evolution operator is 

exp (-itl H) = exp [-itl(H o + Hi + V)] (4.2.2) 
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To find the matrix elements of (4.2.2) using the basis defined in (4.1.1), 
consider first the eigenvalue equation for H: 

H[p)~ = hplp)~, p = 1 . . . , 4N (4.2.3) 

where the subscript v distinguishes the eigenkets of  H from the common 
eigenkets {tin)} of H0,//1. Using (4.2.3) we obtain 

(mlexp (-it1 H)ln) = ~ (m[exp (-#1 H)[p)v v(p[n) 
p 

= ~ (mlp) ,  o(p In) exp (-itx h v) (4.2.4) 
P 

Thus to obtain the desired representation of the evolution operator, we must 
find the eigenvalues {hp} and the representations {(mlp), } of the eigenkets 
in the {lm)}-representation. These are found by diagonalizing the Hmatrix.  
From (4.1.4) and (4.1.5), we get 

(mlHln) = <mill0 + HI + gin) = 8,,,{2E[m < N] + (E + V) 
• [N<  m < 3N] + 2F[3N< m]} 

+ v(1 - 3,,,)[N < m, n < 3N] (4.2.5) 

Because of the simple block structure of (4.2.5), we need only diagonalize 
( 1  - 8,,,)[N < m, n < 3N]; consider the eigenvalue equation 

3b? 

E (1 - 8,,n) ~b, = gr 
n=N+l  

From (4.2.6) it follows that 
3N 

E = (g + I) (4.2.7) 
n=N+l  

The left member of (4.2.7) is independent of m; hence (a + 1)~m must be 
independent of m. Thus either g = -1  or ~bm = u, a constant, where u # 0 
since the null vector is inadmissible as an eigenvector, 

If  r  U, it follows from (4.2.7) that g --- 2 N -  1 ; i.e. ( 2 N -  1) is an 
eigenvalue of (1 - 8~,)[N < m, n < 3N] and the corresponding eigenvector 
has 2N equal components, ~b~. The remaining 2 N -  1 eigenvectors belong 
to eigenvalue g = - 1 ,  From (4.2.7) it follows that the components ~bm of 
each eigenvector belonging to g = -1  satisfy 

3N 
~b,,, = 0 (4.2.8) 

m=N+l  

One set of 2 N -  i linearly independent Vectors satisfying (4.2.8) has 
components 

{~b,(, p) = (8m.•+1 -- 8~,,+1)[N < m < 3NI 

lp=-N+ 1 . . . . .  3 N -  t} (4.2.9) 

From the set (4.2.9) an orthogonal set may be obtained by a straight- 
forward application of the Gram-Schmidt process; we finally obtain for- 

(4.2.6) 



QUANTUM MECHANICAL STATE PREPARATION 21 

the orthonormalized eigenvectors of  the matrix (I - 3,,,.)[N < m,n .<. 3N] 
the set 

V[(p-N)(p-N+ 1)1 ~=~§ 
1 N +  I, . ,3N} (4.2.10) + V~ZIy )SP, 3N P = .. 

where p = 3N belongs to eigenvalue g = 2 N -  1 andp  = N +  i, ..., 3 N -  1 
belong to eigenvalue g = - 1 .  From (4.2.3), (4.2.5) and (4.2.10), it now 
follows that 

(mlp)v  = 8,,p[m,p < N] + ~ ) [ N  < m,p < 3N] 
+ 3,,v[3N < m,p] = ~(plm) (4.2.11) 

and 
hp= 2E[p < N] + (E + F -  v)[N < p <~ 3 N - 1 ]  

+ [E + F + ( 2 N -  1) v] [p = 3N] + 2F[3N < p] 

Substituting (4.2.11), (4.2.12) into (4.2.4) we obtain 
4N 

( m l e x p ( - i  q H) In )  = ~ (mlp)vv(p ln)  exp( - ih  hp) 

N 
= exp( - iq  2E) ~ 8rap 8,p + exp [ - i q ( E +  F)] C,~n 

p=l 

4N 
+ exp ( - i h  2F) ~ 8,,p 8,p 

p=3N+l 

= {exp (-i t l  2E)[m, n < N] + exp ( - i q  2F) 
x [3N < m, n]} 8ran 

+ exp [-it1(E+ F)] C ~ . [ N < m , n < 3 N ]  
where 

C,,, = exp (itl v) 

(4.2.12) 

(4.2.13) 

3N--I 
~(3N) ,,.~(3 N) -'recAP) -,,~'c~) + exp [-i t l(2N - 1) v] -m - .  

p=N+l 

3N 
= exp (it1 v) 2 ~ )  ~ ' )  + {exp [ - i t l ( 2 N -  1) v] - exp (it t v)} c,~ n) 4 3n) 

p=N+l 

1 
= exp (it l v)8mn[N < m, n < 3N] +~-~ {exp [-iq ( 2 N -  1)v] 

- exp (iq v)} (4.2.14) 

since from the completeness relation for the eigenvectors of  the submatrix 
( 1  - ~mn)[N < m, n ~ 3N] we have 

3N 3N 

p=N+I p=N+l 

= ( m l n ) [ N <  m,n < 3N] 

---- 3,,,[N < m, n < 3N] (4.2.15) 
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Hence 
Cmn = exp (it~ v ) ( X +  ~mn)[N < m,n  < 3N] 

where 
1 

X - ~-~ [exp ( - i h  2Nv) - 1] 

The matrix elements of the evolution operator are therefore 

(mlexp (-it1 H) tn )  = (nlexp (itl H)lm)* 

(4.2.16) 

= {eO(N + 1 - m) + fO(m - 3N)} 3,~n 
+ y ( X  + 3ran)IN < m, n < 3N] (4.2.17) 

where 
e - exp(ih 2E), f =  exp(-itl 2F) t (4.2.18) 

y --- exp [--itl(E + F -  v)] J 

and 0 is the unit step symbol defined in (4.1.3). 

(ii) Dynamical Evolution f rom the Initial State po(O) | pl(o) 
Let the arbitrary matrix elements of po(o) be symbolized as follows: 

(Elp~176176 ~176176176 (4.2.19) 
o<Flpo(o)lE>o c* o<FlPo(o)lF)o- 

where a and b are real and nonnegative. 
Using (4.1.1), (4.1.8), and (4.2.19) we then Obtain the following form for 

the matrix elements of po(o) | pl(o) in the {Ira)) representation: 

<plpo(O) | 

= N{Spq[aO(p - 2N) + (b - a) O(p - 3N)] 

+ 8p,q-N cO(p -- 2N) + 8p,q+N c* O(p -- 3N)) (4.2.20) 

Determination of p0t(tl) is now a straightforward but tedious computa- 
tion. 

4N 4N 

(mlpol(t , ) ln)  = ~ ~. (m[exp( - i t lH)[p) (Pl#o(O)  
p = l  q=l  

|  H)ln> (4.2.21) 

Expansion of (4.2.21) after substitution of (4.2.18) and (4.2.20) yields 

1 
(mlpol(h) ln)  = .~ ~ X X * [ N  < m, n,p, q < 3N] 

p q  

x ~,q{aO(p - 2N) + (b - a) O(p - 3N)} (~) 

+ 1 ~ X X * [ N  < m , n , p , q  < 3N] 
p q  

• {c3,.q_r~ O(p - 2N) + c* 3p,~+N O(p -- 3N)} (/3) 
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1 ~ X~,~.[N< + ~  m , n , p , q < 3 N ]  
p q  

• 3pq{aO(p - 2N) + (b - a) O(p - 3N)} (7) 

+ 1 ~ X3.,,[N < m , n , p , q  < 3N] 
pq  

x {cap,q_ N O(p - 2N) + c* 3p,,~+N O(p - 3N)} (e) 

Pd 

x 3pq{aO(p - 2N) + (b - a) O(p - 3N)} (0 

+1.. ~ X *  3mp[N < m , n , p , q  <~ 3.N] 
pq  

• {cap,a_ u O(p -- 2N) + c* ao,,~+ N O(p - 3N)} (.q) 

+ 1 ~  8,,,p~,:,,,[N < m , n , p , q  < 3N] 
pq  

• 3p.{aO(p - 2N) + (b - a) O(p - 3N)} (0 

+ 1  ~ 3.,~, 3,,.[N < m , n , p , q  <~ 3N] 
pq  

• {c3p.q_N O(p - 2N) + c* ~p.q+N O(p - 3N)} (~c) 

+ ..1 ~ y ( X  + 3mr)[N < m , p  <~ 3N] 
p q  

• 3pq{aO(p - 2N) + (b - a) O(p - 3N)} 
• 3a,,{O(N + 1 - q) e* + O(q - 3N)f*} (v) 

+~ff__. y ( X  + 3 ~ , ) [ N < q , n < 3 N ]  
p q  

• 31,q{aO(p - 2N) + (b - a) O(p - 3N)} 
• 8mp{O(N + 1 - m) e + O(m - 3N)f} (~:) 

+ ..1 ~ y ( X  + 3,,,p)[N < m , p  < 3N] 
pq  

• ~,v,{0(N + 1 - q ) e *  + O ( q -  3N)f*} 
• c* ~p.q+N O(p - 3N) (o) 
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+ 1 ~ y ( X  + ~p)[N < m,p < 3N] 
P q  

• 8q,,{O(N + 1 - q) e* + O(q - 3N)f*} 

• c~p,~-N O(p - 2N) (c~) 

+1~ ~.~o(u + l - m ) e  + O(m- 3U)f~ 
P q  

• y*(X* + 3q.)[N < q, n < 3N] e3p,q_s O(p - 2N) 
(v) 

+ N ~ 3.,{O(N + 1 -  m)e + O(m - 3N)f} 
P q  

• y*(X* + 3q,,) [N < q, n < 3N] c* 3~,,q+N O(p - 3N) 
(r 

+-~ ~ ~m~3o.(O(N + 1 - m ) e  + O(m - 3N)f} 
p q  

• {O(N + 1 - q) e* + O(q - 3N)f*)  

• 3pq{aO(p -- 2N) - (a - b) O(p - 3N)) (X) 

+ 1  ~ 3,. .~..O(m-- 3 N ) O ( q -  3N) 
PO 

• {c~p,.-N O(p - 2N) + c* 3.,q+ N O(p - 3N)} (~o) 

Because the bracketed index ranges and the conditions imposed by ~'s 
and O's are mutually exclusive, terms (/3), (~), (~), (K), (v), (~). (o), (v), and 
(~o) will vanish. For example, consider (v); after summing with the aid of  
the Kronecker 3's, we obtain 

l y ( X +  3m.)[N < m,n < - 2N) + (b - a) - 3N)) 3N]{aO(n O(n 

• (O(N + 1 - n) e* + O(n - 3N)f*} 

an expression that can be expanded into two terms one proportional to 
O(N+ 1 - n) [N< m,n < 3N], the other, to O(n - 3N)[N < m,n < 3N]. But 
n cannot satisfy both n < N + 1 and n > N, nor can n satisfy both n > 3N 
and n < 3N. Hence the term (v) vanishes. 

Similarly, parts of  terms (~), (y), (~), (0, (~), (~), and (X) vanish. When 
these simplifications are taken into account, the expansion (4.2.21) becomes 

(m]pol(q)ln) = X X *  a[N < m, n < 3N] (~) 
+ I X a [ N <  m < 3N] [2N < n < 3N] 
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1 , 
- r ~ X  a[N< n <~ 3N] [2N< m < 3N] 

(0 

+13,,,,~a[2N< m < 3N] 

(0 

+ l y x f * [ N  < m <~ 3N] [3N < n ~< 4N] 

+ l y .  X ' f *  IN < n <~ 3N] [3N < m < 4N] 

(4,) 

+ ~cyS,~,~_Nf [3N< n < 4N] 

(~2) 

1 , , 
+ ~ c  y 8n~,,_~.f[3N<m<~ 4N ] 

(~) 

+ l b  8,,, (4.2.22) 

(x) 

4.3. Sequence of Reduced Density Matrices for $o 
To determine po(fi), the trace of p0~(tl) over ~ j  must be calculated; the 

resultant matrix elements of po(tO are given by 

+ 

(4.3.1) 

N 

E <ld2lm,(t~)lld2> 
d2=l 

o<ElPo(q)lF)o = o<FlPo(tOlE)o* = ~ <ld~ Ipot(tl)]2a,) 
dl 

+ ~ (ld2]po~(q)12dz) 
d2 

o<Ftm(tOIF)o = E (2dl IPo~(q)124) 
dl 

+ ~ (2d2]po1(t~)12d2) a~ 

where the symbols {[td), [2d)} are related by (4.1.1), (4.1.2), to the set 
{[m)) used to represent pol(tl) in (4.2.22). 

N 

o<Elpo(q)lE)o = E <ld~lpo,(t,)lldi) 
dl= l  
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TO extract from (4.2.22) the quantities called for in (4.3. I), it is convenient 
to display the pol(q) matrix itself: 

ldl [ m =  1 

N 

2dl { 2N 

ld2 { 3N 

2d2 { 4N 

ldl 2dl ldz 2d2 

n = 1 N 2N 3N 4N 

b, 

c~+?, 

+~+~ 

~1 + ~ 2  

O" 1 

crl + cr2 

X 

(4.3.2) 

The empty blocks in (4.3.2) contain only zeros; the Greek letters are keyed 
to the terms in (4.2.22). Studying (4.3.2) makes it easy to substitute (4.2.22) 
into (4.3.1) to obtain the reduced density matrix for So at t = tl. 

[o(ElPo(t,)lE)o o(Elpo(tl)lF)o~ _ ( tz~ a a~ c b) 
(Po(fi)) = \o<Flpo(fi)lg)o o<F[po(h)lg>o] -- ~A~* c* (1 - /z , )a  + / 

(4.3.3) 

where 
1 . 

i~l - N X X *  + X+ X* = 1 -~NsmZNvt, 

and 

2h =yf*(1 + X) = exp [- i (E-  F -  v) tl] {1 + ~ [exp (-it, 2Nv) -1]} 

According to the discussion in Section 3, the reduced density matrix for 
50 after interaction with E2 may be derived by considering the dynamical 
evolution of So + g2, with (4.3.3) taken as the state of 5o at the beginning 
of the So - E2 interaction. The initial state of E2 is the microcanonical 
ensemble density matrix (4.1.8). 
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Thus by exploiting the analogy between the 50 - El and So - / :2  inter- 
actions, we conclude that the reduced density matrix for 50 at t = tz, the 
clOSe of the 50 - / :2  interaction, is given by 

(P~ = ~12*0q* c*) (1 --/s163 a) + (I -- y , ) a  + b 
(4.3.4) 

where 
1 2 /~2 - 1 - ~ s i n  Nv(t2 - q) 

and (4.3.5) 

~ z - e x p  [ - i ( E - F - v ) ( t z - q ) ] [ 1  + 2~{exp [ - i ( t z -  t i ) 2 N v ] - 1 } ]  

From the normalization of po(O), we have a + b = 1 ; hence the lower right 
element of (4.3.4) may be written as 1 -/s a. 

Therefore, after $o has sequentially interacted with/:1,/:2 . . . . .  /:r during 
the respective intervals [0, q], [q, t2] . . . .  , [tr_~, t~:], the reduced density 
matrix for So will have evolved to the form 

{(g~ /zk)  a (k=l~I/~k) c 1 (4.3.6) (po(tr))=~(k~ A.*)c* I- (k=I~l iz.)a] 
where 

1 2 /zk -- 1 - ~ s i n  Nw'k 

and (4.3.7) 

with 

{1 ) 
Ak = exp [-i(E - F -  v) l-k] 1 + ~-~ [exp (-irk 2Nv) - 1 ] 

~'g ------ tk -- t~_l 

If each time interval ~'k has the same value r, (4.3.6) becomes simply 

tr)) = ( I~ra Age ~ (4.3.8) (Po( \X*r c* 1 -  t~ r a] 

where/ ,  and A are given by (4.3.7) with ~'k = r. 
To prove that the interaction between $o and g drives $o to the final 

state (4.1.10), viz., 

(p0(too)) = (00 ~) (4.3.9) 



28 JAMES L. P A R K  A N D  W I L L I A M  B A N D  

we have only to prove that 

and 

lim/x r = 0 (4.3.10) 
K,--) eo 

lim I ~ = 0 (4.3.11) 
K~ co 

I f N v r  # hr, l = 0, 4-1, 4-2 . . . . .  then 

1 1 . 2Nvz  I 1= - sm <1 (4.3.12) 

From (4.3.12) it follows that (4.3.10) is valid for all choices of �9 except a 
set of measure zero. 

Similarly, to prove that (4.3.11) is correct, we note first that 

]t I = 1 + ~ [ e x p ( - i z 2 N v ) -  1] 

exp (ir2Nv) 

~-~)sin2 Nvr]  (4.3.13) 

Hence Itl < 1, provided RvT#l~r ,  and (4.3.11) is therefore valid for 
almost all values of ~-, the exceptions being the same set of measure zero for 
which (4.3.12) fails. 

Since these results are independent of the p0(o) matrix elements a, b, c, 
we have demonstrated that the interactions described do indeed illustrate 
the concept of coercive preparation. 

The rate of  convergence of the state of So towards the desired end depends 
on the magnitudes of  I~1 and 1tl and these in turn depend generally on the 
magnitude of ~- m a periodic fashion. We can make this typically quantal 
situation appear more classical by choosing short enough times: 

w < 1 /a /N  (4.3.14) 

Then 
]lzl -+ 1 - NvZ r = 

and 

IAI -+ l -- ( 1 - - 2 ~ ) N v 2 T Z  (4.3.15) 

The form (4.3.15) is obtained after the 5o - El interaction if second-order 
perturbation methods are used. 

5. The Preparing Environment: A Regression Problem 

The illustration of coercive preparation treated in detail above was 
intimately connected with the concept of  energy; an interaction potential 



QUANTUM MECHANICAL STATE PREPARATION 29 

energy was carefully adjusted so that the system would be driven toward an 
energy eigenstate, though not necessarily the ground state. Thus it is not 
obvious that similar coercive procedures can be devised for preparing states 
other than energy eigenstates of the system. However, the approach of 
Lamb, wherein the Hamiltonian is temporarily adjusted so that any pre- 
selected state becomes an energy eigenstate, offers one possible approach 
to the problem of generalizing our coercive preparation model to cover the 
preparation of arbitrary states. 

More challenging, perhaps, than this matter of generalization is the 
question of preparing the environment/:. In our model the initial state of 
the system to be prepared was of necessity left arbitrary but the preparing 
environment E had to have a particular initial density matrix dependent 
upon which state of So was to be prepared by the interaction. 

Hence we have a disconcerting infinite regression: how is the preparing 
environment E for S O to be prepared ? If  by interaction of E with an auxiliary 
preparing environment E', then how is E' prepared? Such queries can of 
course be pursued ad infinitum. Even Margenau's 'waiting' strategy is 
not immune to this objection: the electromagnetic field must be prepared 
and maintained in a pure vacuum state to ensure that a pure ground state 
eventually is produced for the system. 

In the present paper we have simply bypassed this difiiculty by appealing 
to equilibrium statistical mechanics, according to which a macro-system 
in thermodynamic equilibrium is properly described by the micro- 
canonical density matrix (4.1.8). In other words, we have assumed merely 
that macrosystems in thermodynamic equilibrium are readily available. 

However, the very profound problem of relaxation to equilibrium 
(ergodic theory, H-theorems, etc.) is itself perhaps the most fundamental 
preparation-of-state problem in theoretical physics. Indeed it was the latter 
that originally motivated the present authors to undertake continuing 
investigations from which the present analysis of coercive preparation has 
emerged. 
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